
0

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1

1 Executive Summary

On 2021.04.13, the SlowMist security team received the Bunny Park team's security audit application for Bunny

Park, developed the audit plan according to the agreement of both parties and the characteristics of the project, and

finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box
testing

Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project party should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

2

Level Description

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Reentrancy Vulnerability

Replay Vulnerability

Reordering Vulnerability

Short Address Vulnerability

Denial of Service Vulnerability

Transaction Ordering Dependence Vulnerability

Race Conditions Vulnerability

Authority Control Vulnerability

Integer Overflow and Underflow Vulnerability

TimeStamp Dependence Vulnerability

Uninitialized Storage Pointers Vulnerability

Arithmetic Accuracy Deviation Vulnerability

tx.origin Authentication Vulnerability

3

3 Project Overview

3.1 Project Introduction

Deployed on Binance Smart Chain (BSC), BunnyPark is an novel and secure decentralized application ,full of

opportunities and enjoyments. The developer friendliness and openness of BunnyPark enables it be compatible with

mainstream and innovative DeFi products. It supports more than DEX, oracle machines, NFTs, liquidity proof of work,

loan and insurance among other common features, but as well allows to quickly build and flexibly assemble

distributed applications (Dapps) of any forms via universal developer protocol.

Audit Information：

Github：https://github.com/renvincentrui/bunnypark

commit: 2b3ba953bc1b476350927244b120b26850b11925;

fix committ: 6d98c5708931a27644e46d5e54ebfd6dc131bed0;

3.2 Vulnerability Information

"False top-up" Vulnerability

Variable Coverage Vulnerability

Gas Optimization Audit

Malicious Event Log Audit

Redundant Fallback Function Audit

Unsafe External Call Audit

Explicit Visibility of Functions State Variables Aduit

Design Logic Audit

Scoping and Declarations Audit

4

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Excessive Authority

issue
Authority Control

Vulnerability
Medium Fixed

N1 Whitelist quota bypass
Design Logic

Audit
Critical Fixed

N2
The series of the

activated card slot has
not been checked

Design Logic
Audit

Medium Ignored

N3
No restrictions on coin

id
Design Logic

Audit
Suggestion Ignored

N4
Event information

recording error
Malicious Event

Log Audit
Low Fixed

N5 Others Suggestion Fixed

4 Code Overview

4.1 Contracts Description

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

4.3 Vulnerability Summary

[N1] [Medium] Excessive Authority issue

5

Category: Authority Control Vulnerability

Content

Owner of the NFTCards contract can burn user's nft card, which leads to the Excessive Authority issue

 function burn(address owner, uint256 tokenId) public onlyOwner{

 //SlowMist// can burn andy nft card of user, which leads to the Excessive

Authority issue

 _burnNFT(owner, tokenId);

 delete cardSerial[tokenId];

 }

Solution

it's suggest to move the owner role to TimeLock contract or the governance

Status

Fixed; The project side has deleted the related logic according to their business conditions

[N1] [Critical] Whitelist quota bypass

Category: Design Logic Audit

Content

a. The buyWarrior function of the CardSales contract does not limit the number of tokenIds purchased, which results

in users passing in an empty array. The length of the empty array is 0. Then even if the whitelist is not set, it can grow

from scratch and get the quota.

b. The buyWarrior function of the CardSales contract checks that the array length of the tokenIds parameter must

meet the size of the whitelist quota, but the whitelist quota is self-increasing, so that users can always purchase

Warriors with the whitelist quota in the future. Bypass the 5 quota limit set by the whitelist

 function buyWarrior(uint256[] calldata tokenIds, uint256 amount) external lock {

 currSoldWarriorNum = currSoldWarriorNum.add(tokenIds.length);

 require(currSoldWarriorNum + currSoldWarriorActivationSetNum <=

presaleWarriorCount, 'CardSales: warrior sold out');

 //SlowMist// The length of the tokenIds array is not limited, so that an

6

array with a length of 0 can be passed in for self-increment

 require(whitelist[msg.sender] == tokenIds.length, 'CardSales: not in the

whitelist or quota not right');

 //0 means not set whitelist,6 means already buy once

 //SlowMist// The quota is increased automatically, and users can always

purchase NFT cards with the whitelisted quota, bypassing the whitelist restriction

 whitelist[msg.sender] = warriorQuota + 1;

 //sum price and check amount

 uint256 sum = priceWarrior.mul(tokenIds.length);

 require(sum <= amount, "CardSales: need more usdt amount");

 _safeTransfer(usdt, msg.sender, usdtRecipient, sum);

 for (uint256 i = 0; i < tokenIds.length; i++) {

 require(tokenIds[i] <= 5000 && warriorTokenIds[tokenIds[i]] == 0,

"CardSales: token id is not warrior or already sold");

 INFTCard(shareCardNftToken).mintSerial1Card(msg.sender, tokenIds[i]);

 warriorTokenIds[tokenIds[i]] = 1;

 //user=>serialType=>card info

 userShareCardTokens[msg.sender][1].push(CardInfo(tokenIds[i],

block.number));

 }

 shareCardUsers.add(msg.sender);

 emit BuyWarrior(msg.sender, tokenIds, sum, amount);

 }

Solution

Check the length of the passed tokenIds array

Status

Fixed; Problem fixed

[N2] [Medium] The series of the activated card slot has not been checked

Category: Design Logic Audit

Content

The setSlotPrivate function of the CardSales contract does not verify whether the series of the classic card to be set

is consistent with the corresponding series of the activated card, which leads to the possibility of putting the family

series of cards into the holiday series.

7

function setSlotPrivate(address user, uint8 serial, uint256 cardIndex, uint256

tokenId, uint256 slotIndex, uint256 commonCardTokenId) private lock {

 //SlowMist// The category and serial of comonCardTokenId are not checked. As

a result, the activation card slot of the classic card series can activate the family

series card.

 uint256 len = userActivationCardTokens[user][serial].length;

 require(cardIndex < len, "CardSales: cardIndex is not exist");

 require(userActivationCardTokens[user][serial][cardIndex].tokenId == tokenId,

"CardSales: tokenId is not right");

 require(userActivationCardTokens[user][serial][cardIndex].activated,

"CardSales: not activated");

 require(slotIndex < 4, "CardSales: slotIndex is not exist");

 //check commonCardTokenId's owner is msg.sender

 require(INFTCard(commonNftToken).ownerOf(tokenId) == user, "CardSales: user

not own this common card token id");

 //Transfer user token to this contract

 INFTCard(commonNftToken).transferFrom(user, address(this),

commonCardTokenId);

 userActivationCardTokens[user][serial][cardIndex].slot[slotIndex] =

commonCardTokenId;

 emit SetSlot(msg.sender, user, serial, cardIndex, tokenId, slotIndex,

commonCardTokenId);

 }

Solution

Check the serial value

Status

Ignored; After confirming with the project party, the business code here has been deleted, and the business logic

here needs to be redesigned after subsequent business changes

[N3] [Suggestion] No restrictions on coin id

Category: Design Logic Audit

Content

The buyWarrior function of the CardSales contract does not limit the coin id. It is recommended to limit the coin id

8

function buyWarrior(uint256[] calldata tokenIds, uint256 amount) external lock {

 require(tokenIds.length > 0, 'CardSales: input tokenIds length is 0');

 currSoldWarriorNum = currSoldWarriorNum.add(tokenIds.length);

 require(currSoldWarriorNum + currSoldWarriorActivationSetNum <=

presaleWarriorCount, 'CardSales: warrior sold out');

 require(tokenIds.length <= warriorQuota && whitelist[msg.sender] ==

tokenIds.length, 'CardSales: not in the whitelist or quota not right');

 //0 means not set whitelist,6 means already buy once

 whitelist[msg.sender] = warriorQuota + 1;

 //sum price and check amount

 uint256 sum = priceWarrior.mul(tokenIds.length);

 require(sum <= amount, "CardSales: need more usdt amount");

 _safeTransfer(usdt, msg.sender, usdtRecipient, sum);

 for (uint256 i = 0; i < tokenIds.length; i++) {

 require(tokenIds[i] <= 5000 && warriorTokenIds[tokenIds[i]] == 0,

"CardSales: token id is not warrior or already sold");

 //SlowMist// Unlimited tokenId, when tokenId already exists, the function

call will fail

 INFTCard(shareCardNftToken).mintSerial1Card(msg.sender, tokenIds[i]);

 warriorTokenIds[tokenIds[i]] = 1;

 //user=>serialType=>card info

 userShareCardTokens[msg.sender][1].push(CardInfo(tokenIds[i],

block.number));

 }

 shareCardUsers.add(msg.sender);

 emit BuyWarrior(msg.sender, tokenIds, sum);

 }

Solution

Restrict tokenId

Status

Ignored; After confirming with the project party, adding the limit will consume more gas, and the passed tokenid will

call other functions to first determine whether it has been cast

[N4] [Low] Event information recording error

9

Category: Malicious Event Log Audit

Content

The buyWarrior / buyWarriorActivationSet / buyAstronaut / buyActivation function of the CardSales contract uses the

amount passed in the parameter as the purchase amount in the event statement, but this amount is not the actual

purchase amount. The user can pass in a large amount, which causes the event information to be recorded

incorrectly

e.g. buyWarrior function

function buyWarrior(uint256[] calldata tokenIds, uint256 amount) external lock {

 require(tokenIds.length > 0, 'CardSales: input tokenIds length is 0');

 currSoldWarriorNum = currSoldWarriorNum.add(tokenIds.length);

 require(currSoldWarriorNum + currSoldWarriorActivationSetNum <=

presaleWarriorCount, 'CardSales: warrior sold out');

 require(tokenIds.length <= warriorQuota && whitelist[msg.sender] ==

tokenIds.length, 'CardSales: not in the whitelist or quota not right');

 //0 means not set whitelist,6 means already buy once

 whitelist[msg.sender] = warriorQuota + 1;

 //sum price and check amount

 uint256 sum = priceWarrior.mul(tokenIds.length);

 require(sum <= amount, "CardSales: need more usdt amount");

 _safeTransfer(usdt, msg.sender, usdtRecipient, sum);

 for (uint256 i = 0; i < tokenIds.length; i++) {

 require(tokenIds[i] <= 5000 && warriorTokenIds[tokenIds[i]] == 0,

"CardSales: token id is not warrior or already sold");

 INFTCard(shareCardNftToken).mintSerial1Card(msg.sender, tokenIds[i]);

 warriorTokenIds[tokenIds[i]] = 1;

 //user=>serialType=>card info

 userShareCardTokens[msg.sender][1].push(CardInfo(tokenIds[i],

block.number));

 }

 shareCardUsers.add(msg.sender);

 //SlowMist// The amount is passed in by the user, which will cause event

recording errors

 emit BuyWarrior(msg.sender, tokenIds, sum,amount);

 }

10

Solution

Use ”sum“ to record the purchase amount instead of ”amount“

Status

Fixed; The amount field has been removed from the latest code

[N5] [Suggestion]

Category: Others

Content

The stop and start functions of BPToken use the payable modifier, but there is no business logic that needs to be

transferred, which is a redundant decorator. Suggest to delete

//SlowMist//payable modifier redundancy

 function stop() public payable onlyOwner {

 stopped = true;

 }

function start() public payable onlyOwner {

 stopped = false;

 }

Solution

Delete the corresponding redundant code

Status

Fixed

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002104270001 SlowMist Security Team 2021.04.13 - 2021.04.27 Passed

11

Summary conclusion: The SlowMist security team uses manual and internal tools to analyze the code. Six problems

were discovered during the audit. It contains 1 serious vulnerability, 2 medium-risk vulnerabilities, 1 low-risk

vulnerability and 2 enhancement suggestions. After communication and feedback with the project party, all the

problems found so far have been fixed. Comprehensive assessment without risk

12

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on

the documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

13

